e → α = ∂α M → \overset{→}{e}_α=∂_α \overset{→}{M} ; gαβ = e → α ∙ e → β g_{αβ}=\overset{→}{e}_α∙\overset{→}{e}_β .
⟨ υ ← α │ A → ⟩ = A ( α ) \left⟨\:\overset{←}{υ}{}^α│ \overset{→}{A} \:\right⟩=A^{(α)} ; υ ← α ∙ υ → β = ⟨ υ ← α │ υ → β ⟩ = υ ( β ) x ( α ) = δβα \overset{←}{υ}{}^α∙\overset{→}{υ}_β=\left⟨\,\overset{←}{υ}{}^α│ \overset{→}{υ}_β \,\right⟩=υ_{(β)}^{\phantom{x}(α)}=δ_β^α .
⟨ υ → β │ ω ← ⟩ = ω ( β ) \left⟨\,\overset{→}{υ}_β│\overset{←}{ω} \,\right⟩=ω_{(β)} ; υ → β ∙ υ ← α = ⟨ υ → β │ υ ← α ⟩ = υ x ( β ) ( α ) = δβα \overset{→}{υ}_β∙ \overset{←}{υ}{}^α =\left⟨\,\overset{→}{υ}_β│ \overset{←}{υ}{}^α \,\right⟩=υ_{\phantom{x}(β)}^{(α)}=δ_β^α .
d M → = dxμ e → μ = d x ( α ) υ → α d\overset{→}{M}=dx^μ \:\,\overset{→}{e}_μ=dx^{(α)} \:\,\overset{→}{υ}_α ; dxμ = d x ( α ) υ ( α ) x μ dx^μ=dx^{(α)} \;υ_{(α)}^{\phantom{x}μ} ; d x ( β ) = υ x μ ( β ) dxμ dx^{(β)}=υ_{\phantom{x}μ}^{(β)} \;dx^μ .
ds2 = gμν dxμ dxν = υ ( α ) x μ υ ( β ) μ d x ( α ) d x ( β ) = ηαβ d x ( α ) d x ( β ) ds^2=g_{μν} \:dx^μ \:dx^ν=υ_{(α)}^{\phantom{x}μ} \;υ_{(β)μ} \:dx^{(α)} \:dx^{(β)}=η_{αβ} \:dx^{(α)} \:dx^{(β)} ; ds2 = ηαβ d x ( α ) d x ( β ) = υ x μ ( α ) υ ( α ) ν dxμ dxν = gμν dxμ dxν ds^2=η_{αβ} \:dx^{(α)}\: dx^{(β)}=υ_{\phantom{x}μ}^{(α)} \;υ_{(α)ν} \:dx^μ \:dx^ν=g_{μν} \:dx^μ \:dx^ν ; gμν υ ( α ) x μ υ ( β ) x ν = ηαβ g_{μν} \;υ_{(α)}^{\phantom{x}μ} \;υ_{(β)}^{\phantom{x}ν}=η_{αβ} ; ηαβ υ x μ ( α ) υ x ν ( β ) = gμν η_{αβ} \;υ_{\phantom{x}μ}^{(α)} \;υ_{\phantom{x}ν}^{(β)}=g_{μν} ; υ x μ ( α ) υ ( α ) x ν = δνμ υ_{\phantom{x}μ}^{(α)} \;υ_{(α)}^{\phantom{x}ν}=δ_ν^μ .