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Abstract
This article specifies some aspects of calculations involved in gen-

eral relativity, whose consideration is often approximate and can alas
sometimes lead to misinterpretations.

Introduction

In its article “Relativity of space-time, gravitational effects” [1], C. Geuting
lets remain some ambiguities of notations which it seems useful to mention.

1 Space-time in the presence of gravitation

1.1 Notation for the metric

We proceed in the presence of a star of mass M, motionless and of spherical
symmetry. The space-time metric can be written with the “classic” notations
in spherical coordinates:

ds2 = A(r) c2dt2 −B(r) dr2 − r2 dθ2 − r2sin2(θ) dφ2. (1)

1.2 Motion of a free particle in the gravitational field

The length of a line of universe followed by the particle between P1 and P2

can be written, using a parameterization by a variable u which may a priori

seem “unspecified” and while noting X• =
dX

du
:

s12 =

∫ s2

s1

ds =

∫ u2

u1

ds

du
du

=

∫ u2

u1

√
A(r) c2t•2 −B(r) r•2 − r2 θ•2 − r2sin2(θ) φ•2 du.
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According to Fermat’s principle, this can be interpreted in the form:

s12 =

∫ s2

s1

L(u, t, r, θ, φ, t•, r•, θ•, φ•) du

with a Lagrangian not depending explicitly on u:

L(t, r, θ, φ, t•, r•, θ•, φ•) =

√
A(r) c2t•2 −B(r) r•2 − r2 θ•2 − r2sin2(θ) φ•2.

The solutions t(u), r(u), θ(u) and φ(u) satisfy the equations of Euler-
Lagrange:

d

du

∂L

∂t•
=
∂L

∂t
;

d

du

∂L

∂r•
=
∂L

∂r
;

d

du

∂L

∂θ•
=
∂L

∂θ
;

d

du

∂L

∂φ•
=
∂L

∂φ
.

But in these conditions, is the variable u really “unspecified” as indicated
in [1]? In fact not since when postponing the preceding solutions in the

relation (1) we deduce s(u). In fact we obtain L =
ds

du
= Cst, which corre-

sponds to an expression s(u) affine (for a massive particle, one could have
parameterized by s).

It is moreover this property, once it is known, which allows faster calcu-
lations by replacing L by its square (the effect on the result is the same as
multiplying by a constant). Otherwise, it would be impossible to justify the

property s12 =

∫ s2

s1

ds =

∫ u2

u1

ds

du
du ∝

∫ u2

u1

( ds
du

)2
du.

The particular case of the photons corresponds to the case s(u) = Cst,
in accordance with the characteristic property ds = 0. Moreover conversely
it is this case, impossible to parameterize by s, which is the most simplified
by this method. The analogy with non-relativistic mechanics and special
relativity shows in fact that the quantity to be minimized for a massive

particle is the action S12 =

∫ s2

s1

mc ds. When comparing the momentums,

the passage to the limit for zero mass shows that it is necessary to replace
mc

s•
by

hν

c
, which requires to introduce an additional

ds

du
factor: when

replacing L by its square one automatically removes the difficulty of the
passage to the limit and one can treat in the same way massive or massless
particles [2].

One thus obtains [1], for θ =
π

2
(that it is always possible to impose by

a choice of axes orientation):

r2

A(r)

dφ

dt
= J = Cst; (2)

B(r)

A2(r)

(dr
dt

)2
+

r2

A2(r)

(dφ
dt

)2
− c2

A(r)
= H = Cst; (3)
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with in addition, while posing Rs =
2GM

c2
:

A(r) = 1− Rs

r
=

1

B(r)
. (4)

2 Application to black holes

2.1 Singularity of the metric

The expression (4) highlights the singular behavior of the metric: for r < Rs

one obtains A(r) < 0 and the coordinate t seems to be no more a temporal
variable. This is associated with the properties of the stars named “black
holes”.

It can be then useful to reconsider the problem with other coordinates,
in particular with the “isotropic” metric:

ds2 = A(r) c2dt2 −B(r)
(
dr2 + r2 dθ2 + r2sin2(θ) dφ2

)
. (5)

One can determine A(r) and B(r) by solving of the equations of the field
[3, 4], but by comparison with (1), this change of radial coordinate imposes:

B(r)dr2 = B(r)dr2 and B(r)r2 = r2 ;

from that one can deduce:

dr2

r2
= B(r)

dr2

r2
;

dr

r
= ± dr

r.(r −Rs)
;

r = r .

(
1− Rs

2r

)
±
√

1− Rs

r
2

; (6)

or conversely, while noting Rs =
Rs

4
:

r = r .
(
1 +

Rs

r

)2
. (7)

This then makes it possible to write:

B(r) =
(
1 +

Rs

r

)4
; A(r) =

(r −Rs

r +Rs

)2
. (8)

It is then useful to notice that the singularity for r = Rs corresponds
to that for r = Rs, but that A(r) cancels without becoming negative: the
coordinate t remains a temporal variable.
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This difference in behavior seems inconsistent with the physical prop-
erties. The quantity A is a property associated with the point P in space
(fixed) where it is calculated; expressions A(r) and A(r) differ because the
marking of P is not made in the same way, but the result is the same A
(this is why we do not note A). Unambiguously for a static metric, the flow
of time at P does not depend on the way in which one locates the space
position of P .

The reason of this apparent difference comes from the non-bijective char-
acter of the relations (6) and (7): for r < Rs (inside the singular zone) one
obtains r > Rs (cf. figure 1). In fact, the “radius” r is determined from the
perimeter, but because of the strong curvature of space some spheres can
have an “inner radius” (distance to the center) smaller and yet a “periph-
eral radius” larger. Thus inside one obtains A(r) > 0 and the coordinate t
remains indeed a temporal variable (as well as with isotropic coordinates) [5].

Fig. 1: variations (in reduced notations) of the “classic” radial variable as a
function of the “isotropic” radial variable.
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2.2 Freefall of a massive particle

Let us consider a massive particle, released with a null initial speed outside
the singular zone (for the reasons evoked in the preceding part, we carefully
avoid here noting that by r > Rs).

In this case, the equation (3) can be written:

B(r)

A(r)

(dr
dt

)2
− c2 = H A(r). (9)

This gives under the initial conditions: −c2 = H A(r0) ; then the norm
of the falling speed (established with the classic r coordinate, but valid even
with the r coordinate):

v =

√
B

A

∣∣∣∣drdt
∣∣∣∣ = c

√
1− A

A0
. (10)

An unexpected consequence is that, if the speed increases until the sin-
gularity (it tends towards c when A approaches 0), it afterwards decreases
once in the inner zone (A increases): the gravitational force is repulsive [6].
Or, in other words, the gravitation trains in the direction where the field
lines approach one another, but in this area the curvature of space is such
that it corresponds to a drive towards outside.

As stated in [1], the duration of fall until the singularity seems infinite for
any motionless observer located outside. To verify that the duration of fall is

finished for the particle in freefall, one can write: B dr2 =
(
1− A

A0

)
A c2dt2,

and then deduce: ds2 = c2dτ2 = A c2dt2 − Bdr2 =
A2

A0
c2dt2. One thus

obtains (valid in the same way with the coordinate r):(dr
dτ

)2
= c2.

(A0 −A
AB

)
. (11)

With the classic r coordinate, the equation simplifies and seems without
problem for the crossing of the singularity:(dr

dτ

)2
= c2.

(Rs

r
− Rs

r0

)
. (12)

One can while derivating also obtain the form:

d2r

dτ2
= −c

2Rs

2r2
. (13)
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This form is more practical to integrate, because while carrying out into

(12) the initial conditions: r = r0 et
dr

dτ
= 0, one obtains the constant

mathematical solution, clearly unphysical (this difficulty is avoidable, but
complicates unnecessarily).

Part of the simplification comes from the fact that for the crossing v = c
and dτ = 0, but that in addition dr = 0 since this variable r passes by

a minimum. A hidden difficulty is that
dr

dτ
changes its sign when crossing

the singularity.
Numerical integration without precaution gives a curve shown in figure 2

and seeming to pass the singularity with values r < Rs (part in dotted
lines). But the correct curve must be traced with r > Rs (part in dashes;
it turns out that this corresponds to a discontinuity, but that’s only because
the variable r is not necessarily judicious for this case).

Fig. 2: variations (in reduced notations) of the proper duration of fall as a
function of the “classic” radial variable.

We check that inside the particle reaches the limiting coordinate r = r0
(if it does not reach before the surface of the star), in accordance with what
can be deduced from the fact that ln(

√
A) behaves in this case like a

potential of gravitation [4]. This limit obviously does not correspond to the
same position as outside.
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The particle slows down, then moves away from the star, recrosses the
singularity and joined the limit r = r0 outside: it can thus oscillate on both
sides of the singularity.

To visualize more clearly, the simplest is to carry out a change of variable
with the relation (6) (cf. figure 3). A logarithmic scale is needed and we see
that it is usually almost certain that the particle reaches the surface of the
star.

Fig. 3: variations (in reduced notations) of the proper duration of fall as a
function of the “isotropic” radial variable.

One can integrate with the isotropic r coordinate; the equation (11)
simplifies as for (13), but the equation is less simple and the accuracy of
numerical integration is not so good:(dr

dτ

)2
=

c2 r4

(r +Rs)
2
.
( A0

(r −Rs)
2
− 1

(r +Rs)
2

)
; (14)

d2r

dτ2
= − 2c2Rs r

3

(r +Rs)
3
.
( 1

(r +Rs)
2
+

Rs A0

(r −Rs)
3

)
. (15)
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One notes indeed a change of sign of the acceleration (with divergence) for
the crossing of the singularity; it seems moreover that there is impossibility
of equilibrium for r0 = Rs (A0 tends to zero as (r0 − Rs)

2 only and the
second derivative diverges).

From these considerations rises obviously that, if one adopts the reinter-
pretation of metric suggested here, the reasoning developed in parts 3.4 and
3.5 of [1] are no longer suitable.

From another point of view, as stated in [1], the duration of the fall
seems infinite for any outside observer (the gap between the particle and
the singularity seems to decrease about exponentially). This brings up a
paradox. One can indeed consider a particle in external circular orbit; the
temporal dilation coefficient due to its movement is finished and does not
change anything qualitatively. If another particle in vertical freefall crosses
the one in rotation, it will return on the same level after a finished proper
duration, but never for the second. This seems in contradiction with the
principle of reciprocity.

However, it is likely that this circumstance is impossible for other reasons
(for a complete demonstration, it would be necessary to study the interior
field within the star and to specify the connection of the external field with
the interior field, imposing the relation between the size of the star and that
of the singularity). As indicated previously, it would be necessary to suppose
r0 ≈ Rs otherwise the particle in fall would reach the surface of the star
and would not go out again. Now, there does not exist circular trajectories
passing so close to the star (even the light finishes its trajectory in spiral if
it passes too much close to the star; cf. figure 8 in [1]).

On the other hand, it appears that if there would exist a static black
hole the matter on the surface of the star would inevitably undergo a field
close to the one outside just above. . . that is to say a repulsive field. The
matter on the surface would thus be ejected: there cannot exist any static
black hole.

If a black hole is formed by collapse of a large amount of mass in a very
reduced space (for example collision of two neutron stars), then the formed
object can not be stable. The peripheral matter “in excess”, responsible for
the occurrence of the singularity, is ejected.

But, unlike what occurs for a single particle, this changes the metric: the
singularity moves away and then disappears progressively as the peripheral
matter is ejected; the formed unstable object most probably explodes in
supernova and only the transitory phenomena are masked by a singularity.
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Conclusion

The surprising discoveries of quantum mechanics may have accustomed us
not to seek hardly the physical interpretation of the studied concepts. That
perhaps diverted us a little from the rigor necessary to study precisely the
coordinates being used to describe the objects of the type “black hole” (or
other “wormholes”). Certainly, in general relativity, the coordinates are in
principle arbitrary, but they still have to respect some rules: the geometric
“maps” they allow us to define must be bijective. The effects on the physical
properties which result from this can be fundamental: the gravitation can
be repulsive and the static black holes cannot exist.
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